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Abstract: For the unconstrained global optimization 

problems, a new one-parameter filled function is 

constructed with an assumption that the objective function 

needs to be continuous and differentiable but do not 

following the Lipschitz condition, it overcomes the 

problem that the numerical experiment of the filled 

function with exponential terms may decrease the 

efficiency of filled function algorithm. The related 

properties of the filled function were studied and the 

feasibility of this method was verified by numerical 

analysis. Applying the filled function method to the study 

of pathological factors in renal cell carcinoma metastasis, 

in the process of treating the renal cell carcinoma 

metastasis by the two classifications, the filled function 

method is used to minimize the cross entropy loss function, 

and the global optimal solution is obtained. 
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1. Introduction 

Nowadays the global optimization problems have 

attracted more and more scholars’ attention. Many 

problems encountered in the fields of finance, image and 

engineering can be abstracted into global optimization 

problems. The filled function method used in this paper is 

a deterministic algorithm for solving nonlinear global 

optimization problems. It is convenient that this method 

would not stop after finding a local minimizer and keep 

going to figure out whether there are better local 

minimizers or not. Especially in the unconstrained global 

optimization problem, it is more effective. The filled 

function method was originally proposed by Ge [1]. While, 

in that reference the constructed filled functions made the 

effect in numerical calculations unsatisfactory and the 

filled function given in Ref.[1,2] cannot guarantee that 

there must be local minimizers in the valleys lower than 

the current valley. In response to the above problems, the 

forms of filled functions were modified and more 

complete definitions of filled functions were given by 

some later researchers [3-8]. The implementation of the 

filled function algorithm is generally divided into two 

phases: the minimization phase and the filled phase. The 

main idea is firstly to obtain a local minimizer through the 

local optimization algorithm, and then minimize the filled 

function constructed at that point. This two-phase repeated 

loop iteration makes it possible to jump out of the valley 

where the current local minimizer is located and find the 

global minimizer. 

There are many scholars having constructed many 

different types of filled functions but these different 

functions always come with problems. For example, two-

parameters filled functions are difficult in tuning and have 

low computational efficiency [3,4]; Although one-

parameter filled functions are simpler, the index items and 

logarithmic items are prone to false stable points which 

makes the calculation effect poor [9-11]. In this paper, we 

propose a continuous and differentiable one-parameter 

filled function which is simple and overcomes the 

deficiencies mentioned above. Most of the previous filled 

functions study only carried out theoretical research, and 

did not give the application of the filled function algorithm 

in practical problems. We attempt to study the pathological 

factors of renal cell carcinoma metastasis. The filled 

function method is used to minimize the loss function so 

that the optimal parameters affecting the factors of renal 

cell carcinoma metastasis can be obtained in the process of 

renal cell carcinoma metastasis with two classification 

treatment. 

2. A New Filled Function and Its Properties 

Consider the following unconstrained global 

optimization problem:  

min   ( )f x  

. .s t    .nx R  

Throughout this paper we make the following 

assumptions: 

2.1. Assumptions and Definitions 

Assumption 2.1.1. ( )f x is Lipchitz continuous on nR . 

Assumption 2.1.2. ( )f x is coercive, i.e. ( ) +f  x , as

+ x . 

According to Assumption 2.1.2, there exist a robust 

compact set  nR such that all global minimizers of
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( )f x can be covered by . 

Assumption 2.1.3. ( )f x has only a finite number of local 

minimum, but there can be an infinite local minimizers. 

This paper adopts the definition of the filled function in 

Ref. [3]. 

Definition 2.1.1. [3] 
*( , , )P x x is called a filled 

function of ( )f x at a local minimizer *
x if 

*( , , )P x x

have the following properties: 

(1) * x  is a local maximizer of
*( , , )P x x . 

(2) 
*( , , )P x x has no stationary point in the region

* *

1 { | ( ) ( ), \{ }}U f f  x x x x x  

(3) If *
x is not a global minimizer of ( )f x , then

*( , , )P x x will have a minimizer in the region 

* *

2 { | ( ) ( ), \{ }}U f f  x x x x x . 

The Definition 2.1.1 indicates that if
*( , , )P x x  is a 

filled function that satisfies the definition and *
x is not a 

global minimizer, then by introducing a filled function, the 

next local minimizer obtained is guaranteed to be only in 

the function value ratio in the process of minimizing
*( , , )P x x . A small area of ( )f x exists such that the 

current local minimizer is jumped out, and the iteration is 

repeated until the termination condition is satisfied, 

thereby obtaining a global minimizer lower than the 

current local minimizer. 

2.2. A New One-parameter Filled Function 

The new one-parameter filled function at the local 

minimizer *
x has the following form: 

* *

* 2

1
( , , ) ( ( ) ( ) ).

1
P f f    

 
x x x x

x x
(1) 

Where 

3

3

0, 0,

(t ) 2
( ) 1, 0

1 .

t

t
t t

t




 









     

 

，          (2) 

Next we will show that the function
*( , , )P x x is a filled 

function satisfying Definition 2.1.1. 

Theorem 2.2.1. If *
x is a local minimizer of ( )f x , for 

any 0  , *
x must be a local maximizer of

*( , , )P x x . 

Proof. *
x is a local minimizer of ( )f x . From Assumption 

2.1.1, ( )f x is continuously differentiable on nR , then 

there   exists a neighborhood 
*( , )N x of *

x with 0  , 

such that
*( ) ( )f fx x . Namely for 0  , then 

*( ) ( )f f    x x , 

since that ( ) 1t  . Then for all
*( , )N x x  and 

*x x , we have 

*

* 2

* *

* * 2

1
( , , ) 1

1

1
( , , ),

1

P

P





 
 

 
 

x x
x x

x x
x x

 

Hence, *
x must be a local maximizer of

*( , , )P x x . 

Theorem 2.2.2.
*( , , )P x x has no stationary point in the 

region 
* *

1 { | ( ) ( ), \{ }}U f f  x x x x x , and for any 

x and *x x , let
*( )d  x x x , then

*( , , ) ( ) 0T P d x x x . 

Proof. For
1U x , if

*( ) ( )f fx x and *x x , we can 

have *

* 2

1
( , , ) ,

1
P  

 
x x

x x
then 

*
*

* 2 2

2( )
( , , ) ,

(1 )
P 


  

 

x x
x x

x x
 

for
1U x , 

*( , , ) 0P  x x , then
*( , , ) 0P  x x is 

not a stationary point of
*( , , )P x x . For x that meets the 

above conditions, we have 

*
* *

* 2 2

* 2

* 2 2

2( )
( , , ) ( ) ( )

(1 )

2( )
0.

(1 )

T P d


   
 


  

 

x x
x x x x x

x x

x x

x x

 

Therefore, 
*( )d  x x x is the downward direction of

*( , , )P x x . If choose the direction
*( )d  x x x , we will 

find a point smaller than
* *( , , )P x x . 

Remark 2.2.1. Theorem 2.2.2 states that the filled 

function 
*( , , )P x x has a downward trend on 

* *

1 { | ( ) ( ), \{ }}U f f  x x x x x , 

that is, the current local minimizer is jumped out, and the 

found point is a local minimizer that is smaller than the 

current one. 

Theorem 2.2.3. If *
x is not the global minimizer of ( )f x , 

when
*

00 ( ) ( )f f    x x ,
*( , , )P x x must have 

local minimizer x on
* *

2 { | ( ) ( ), \{ }}U f f  x x x x x . 

Proof. For 2U x and
*( ) ( )f fx x , we have

* *

* 2

1
( , , ) ( ( ) ( ) )

1
P f f    

 
x x x x

x x
, then 

*
* *

* 2 2

*

* 2

2( )
( , , ) ( ( ) ( ) )

(1 )

1
( ( ) ( ) ) ( ).

1

P f f

f f f





  

 


     

 

    
 

x x
x x x x

x x

x x x
x x

 

Next we should proof that there is a point x such that



JOURNAL OF SIMULATION, VOL. 7, NO. 3, Jun. 2019                                                          19 

© ACADEMIC PUBLISHING HOUSE 

 

*( , , ) 0P  x x , which means that x is a local 

minimizer on 2U . If *
x is not a global minimizer, there 

must be 2Ux and
*( ) ( )f fx x . Follow the condition 

in Theorem 2.2.3,
*

0 ( ) ( ) 0f f   x x , when 

00    ,we can have
*( ) ( ) ,f f   x x which can be 

transformed into
*( ) ( ) 0f f   x x . Then 

*( ( ) ( ) ) 0f f   x x  can be obtained. So we can 

draw that ( , )N x x ,
*( , , ) 0P  x x . Finally, there 

must be a x  on 2U is a local minimizer of
*( , , )P x x . 

Remark 2.2.2. It can be seen from Theorem 2.2.3 that if 

the parameter  is sufficiently small, the condition 

*

00 ( ) ( )f f    x x  can be guaranteed. The above 

proofs of Theorem 2.2.1-Theorem 2.2.3 represent that the 

filled function constructed in this paper satisfies the three 

conditions of the filled function definition, so the filled 

function we proposed is feasible. 

Theorem 2.2.4. Suppose *
x is a local minimizer of ( )f x , 

if 1 2, x x  satisfy
*

1( ) ( )f fx x  and
*

2( ) ( )f fx x , 

then the necessary and sufficient conditions for 
* *

2 1  x x x x  are
* *

2 1( , , ) ( , , )P P x x x x . 

Proof. Since 
*

1( ) ( )f fx x , 
*

2( ) ( )f fx x ，from (1) 

and (2), we have 

*

* 2

1
( , , ) 1,

1
P   

 
x x

x x
 

then 

* *

1 2

* 2 * 2

1 2

* *

2 1

* 2 * 2

1 2

( , , ) ( , , )

1 1

1 1

,
( ) (1 )

P P 

 
   

  


   

x x x x

x x x x

x x x x

x x x x

 

combine condition
* *

2 1  x x x x , we have

* *

1 2( , , ) ( , , ) 0P P  x x x x . And from Theorem 2.2.1 

we have
* * *

1( , , ) ( , , )P P x x x x . Furthermore,

* * * *

2 1( , , ) ( , , ) ( , , ) 1.P P P    x x x x x x  

Conversely, the sufficiency is obvious, if
* *

2 1( , , ) ( , , )P P x x x x , then 

* 2 * 2

2 1

1 1
,

1 1


   x x x x
 

hence 
* *

2 1  x x x x . 

Remark 2.2.3. Theorem 2.2.4 illustrates that in 1U , the 

farther away from the local minimizer *
x of ( )f x , the 

smaller the value of the function
*( , , )P x x . So in the 

minimization process, either the point corresponding to

( )f x  smaller than
*( )f x is found, or it will run all the 

way to the boundary, thus avoiding the phenomenon that 

the filled function repeats the round-trip operation during 

the minimization process. 

3. The Filled Function Algorithm and Numerical 

Experiments 

Now, we present algorithm AFF as follows [12]: 

3.1. AFF Algorithm 

1. Choose 0  as the search step size, 00    ; K  

is the upper bound of the number of outer loops k ; m  is 

the upper bound of the number of inner loops i ;

( 1,2, ; 2 )id i m m n  is the direction of selection; Set 

that : 1i  , : 1k  . 

2. Choose
0

k x as initial point; Starting from
*

kx ; the 

local minimizer
0

kx and the local minimum
*( )kf x of the 

objective function ( )f x are obtained by using the existing 

local optimization algorithm. 

3. Construct a filled function
*( , , )P x x at a local 

minimizer
*

kx . 

4. If i m , the filled function
*( , , )kP x x is minimized 

with 
*:k k id  x x  as the starting point, and a local 

minimizer
*

kx of 
*( , , )kP x x is obtained, and turn into 

step 5; otherwise, let : 1k k  , and turn into step 7. 

5. If
*

k x , turn into step 6; otherwise, let : 1i i  , 

turn into step 4. 

6. Starting from
*

rkx , ( )f x is minimized by a local 

optimization algorithm to obtain a new local minimizer
*

1kx . If
* *

1( ) ( )k kf f x x , let
* *

1( ) : ( )k kf f x x , 

* *

1:k kx x , go to step 3; otherwise, go to step 7. 

7. If k K , reduce parameter  , let : 1i  , if 0  , 

let 0  , go to step 4; otherwise stop, output
*

kx and 

*( )kf x . That is, the global optimization minimizer or the 

approximate global optimization minimizer
*

kx is obtained. 

The algorithm is mainly divided into two phases for 

looping. 1  is selected as the initial value. In the first 

phase, the objective function ( )f x is minimized by a local 

optimization algorithm to obtain a local minimizer 
*

kx .Then the second phase is to minimize the new filled 

function
*( , , )kP x x to get the local minimizer

*

kx . If 

* *( ) ( )k kf f x x ，then use
*

kx as the new initial point and 

re-enter the first phase, otherwise, reduce the parameter 

 ,re-enter the second phase. Repeat the above process 

until k K is satisfied. Then the global minimizer or the 

approximate global minimizer is obtained. 

For the above algorithm AFF, we use Python3.5 to 

program and verify it through the following numerical 

experiments. 

3.2. Numerical Experiments 
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The meanings of the symbols used are as follows: 

k : The number of iterations. 
0

kx : The initial point when the original function is locally 

minimized. 
*

kx : The local minimizer of the original function. 

*( )kf x : The local minimum of the original function. 

kx : The initial point when the filled function is locally 

minimized, obtained by
*:k k id x x . 

*

rkx : The local minimizer point when the filled function is 

locally minimized. 

Problem 1 (Six-Hump Camel-back)[4] 

2 4 6 2 4

1 1 1 1 2 2 2

1
min ( ) 4 2.1

3

3 3, 1,2.i

f

i

     

   

x x x x x x x x

x

 

The results are shown in Table I below: 

Table 1. Six-hump camel-back 

k  0

kx  *

kx  *( )kf x  kx  *

rkx  

1 (-2,1) 
(-1.60710452, 

0.56865148) 
2.10425031 

(-1.08710452, 

 0.86865148) 

(-0.9999955, 

0.99999848) 

2 
(-0.9999955, 

0.99999848) 

(0.08984214,  

0.7126564) 
-1.03162845 \  \  

Obviously, there are several local minimizers in the 

Problem 1. From Table 1,

 * 0.08984214,  0.7126564
T

k x is the global minimizer 

of the Problem 1, and
* 1.03( ) 162845kf x is the global 

minimum. 

Problem 2 (Rastrigin) [4] 

2 2

1 2 1 2min ( ) cos(18 ) cos(18 )

2 2, 1,2.i

f

i

   

   

x x x x x

x
 

The results are shown in Table II below: 

Table 2. Rastrigin 

k  
0

kx  *

kx  *( )kf x  kx  *

rkx  

1 (1,1) 
(1.04075871, 

1.04075871) 
0.17977497 

(1.04075871, 

 0.74075871) 

(1.04075831, 

 0.61127157) 

2 
(1.04075831, 

0.61127157) 

(1.04075871, 

0.69384446) 
-0.42571623 

(0.04075871, -

0.24075871) 

(0.04075871, -

0.24075871) 

3 
(0.04075871, 

-0.24075871) 

(2.96461066e-11, 

-3.46923815e-01) 
-1.87890065 

(2.96461066e-11, 

-3.46923815e-05) 

(1.09370176e-11, 

7.03974071e-04) 

4 
(1.09370176e-11, 

7.03974071e-04) 

(1.13890947e-13, -

3.83195090e-09) 
-2 \  \  

From Table 2, it can be found that

 * 1.13890947 13, 3.83195090 09
T

k e e   x is the 

global minimizer of Problem 2, and the obtained global 

minimum
* 1.9999999999( 9) 99978kf  x . 

Problem 3 (3-Hump back Camel) [4] 

2 4 6 2

1 1 1 1 2 2

1
min ( ) 2 1.05

6

3 3, 1,2.i

f

i

   

   

x x x x x x + x

x

 

The results are shown in Table III below: 

Table 3. 3-hump back camel 

k  0

kx  *

kx  *( )kf x  kx  *

rkx  

1 (-3,2) 
(-1.74755242, -

0.87377621) 
0.29863844 

(-0.14755242,-

0.07377621) 
(0.66370003,1.94295319) 

2 (0.66370003,1.94295319) 
(3.80334484e-

10,3.19560893e-10) 

2.69887777e-

19 
\  \  

It can be obtained from Table 3 that

 * 3.80334484 10,  3.19560893 10
T

k e e x is the global 

minimizer of Problem 3, and
* 2.6988777( 7 1) 9kf e x is 

the global minimum. 

According to the results of the above examples, the 

results are compared with the previous paper results: 

From the Table 4, it is concluded that the number of 

iterations in Problem 1 and Problem 3 is less than that in 

Ref. [4], and the results obtained in the numerical Problem 

1 and Problem 2 are substantially the same as those in the 

Ref. [4]. The result of the numerical Problem 3 is less than 

the result of the Ref. [4], so the filled function we proposed 

is feasible and more effective. 

4. The Application of Filled Function Method in 

Pathological Analysis of Renal Cell Carcinoma 
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Metastasis 

In order to illustrate the filled function and its algorithm 

in this paper are feasible and effective, we try to combine 

it with the actual medical case. The case [13] is as follows: 

In order to study the clinical and pathological factors 

related to renal cell carcinoma metastasis, a researcher 

investigated a group of patients undergoing radical 

nephrectomy and collected renal cancer specimens. The 

results of 26 cases are shown in Table 5. 

 

Table 4. Comparison table 

Numerical 

experiment 
Comparison 

Cycle 

index 
Initial point The global minimizer The global minimum 

1 
Our work 2 (-2,1) (0.08984214 , 0.7126564) -1.03162845 

Ref.[4] 3 (-2,1) (-0.08983722 , -0.712699468) -1.03162843 

2 
Our work 4 (1,1) 

(1.13890947e-13 , -3.83195090e-

09) 
-1.9999999999999978 

Ref.[4] 4 (0,0) (-0.00000002 , -0.00000002) -2 

3 
Our work 2 (-3,2) 

(3.80334484e-10 , 3.19560893e-

10) 
2.69887777e-19 

Ref.[4] 3 (-2,-1) (-0.00001356 , 0.00000492) 4.58551865e-10 

Table 5. Renal cell carcinoma metastasis data 

1x  
2x  

3x  
4x  

5x  y  
1x  

2x  
3x  

4x  
5x  y  

59 2 43.4 2 1 0 31 1 47 2 1 0 

36 1 57.2 1 1 0 36 3 31.6 3 1 1 

61 2 190 2 1 0 42 1 66.2 2 1 0 

58 3 128 4 3 1 14 3 138.6 3 3 1 

55 3 80 3 4 1 32 1 114 2 3 0 

61 1 94.4 2 1 0 35 1 40.2 2 1 0 

38 1 76 1 1 0 70 3 177.2 4 3 1 

42 1 240 3 2 0 65 2 51.6 4 4 1 

50 1 74 1 1 0 45 2 124 2 4 0 

58 3 68.6 2 2 0 68 3 127.2 3 3 1 

68 3 132.8 4 2 0 31 2 124.8 2 3 0 

25 2 94.6 4 3 1 58 1 128 4 3 0 

52 1 56 1 1 0 60 3 149.8 4 3 1 

Where 1x refers to the age at which the patient was 

diagnosed; 2x refers to renal cell carcinoma vascular 

endothelial growth factor (VEGF), which is positively 

high to low in three grades; 3x refers to the number of 

micro vessels in the renal cell carcinoma tissue (MVC); 

4x refers to the nuclear histology of kidney cancer cells 

from low to high divided into 4 grades; 5x refers to renal 

cell carcinoma from low to high is divided into 4 Staging; 

y refers to the metastasis of renal cell carcinoma (1 is 

metastasis; 0 is no metastasis). The case determines 

whether renal cell carcinoma is metastasized through five 

influencing factors, and this paper treats it into a two-

classification problem due to the quantification criteria are 

different between different variables, so the data are min-

max standardized firstly, and the parameters of the five 

influencing factors are i , 1,2,3,4,5i  , 1 1( , , )T  ,

1 5( , )T

j jX x x .  Then 

1 1 1 2 3 3 4 4 5 5( ) ,T

j j j j j jt x x x x x          X  

(3) 

where ijx is the j component of the i influencing factor. 

Since ( )jt  is a linear combination, the problem of using a 

linear line to do the two classifications obviously affects 

straightforward. Affecting the classification effect, in 

order to convert the linearity into nonlinearity, a nonlinear 

activation function sigmoid function will be introduced 

here: 

( )

( )

1
( ) .

1 j

j

t
p

e



 

X                        (4) 

The sigmoid function is an S-shaped curve that maps 

the output to 0-1, which means that the output is a 

probability value. These data is processed by ( )jt  , then 

nonlinearly processed by
( ) ( )jp X and the obtained output 

value is close to 0. It is judged that there is no metastasis 

of renal cell carcinoma; if the output value obtained is 
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close to 1, it is judged that renal cell carcinoma 

metastasizes. 

In order to obtain higher accuracy, we will train the 

optimal parameters by minimizing the loss function. Here 

we introduce the cross entropy loss function, which is 

often used in neural networks for multi-classification. Its 

form is as follows: 

( ) ( )

1

1
( ) [ ( ( )) (1 ) (1 ( ))].

n
j j

j j

j

L y ln p y ln p
n 

       X X             

(5) 

In the process of iterative updating of parameters by the 

algorithm, a negative gradient direction is needed. Then

( )L  is used to derive the i parameter i as follows: 

( ) ( )

( ) ( )
1

( ) ( )

( ) ( )
1

( )

1

(1 )( ) ( ( ))( ) 1
( )

( ) 1 ( )

( ) ( )1

( )(1 ( ))

1
( ( )) .

j jn
j j

j j
ji i i

j jn
j

j j
j i

n
j

j ij

j

y yp pL

n p p

y p p

n p p

y p x
n

  









  
  

  

 
 



  







 

 

 

 



 X X

X X

X X

X X

X

     

         (6) 

where jy is the j component of the y group data, 

representing the true value of 0 or 1, when 1jy  , the 

formula (5) The predicted value of
( ) ( )jp X is larger, the 

closer to the true value, the smaller the loss function; when

0jy  , the predicted value is
( ) ( )jp X is smaller, the closer 

to the real value, the smaller the loss function. So this 

paper attempts to minimize the cross entropy loss function 

(5) by using the filled function algorithm. Overcoming the 

problem of using local optimization algorithms can only 

get local minimum. 

In this paper, the data of 4 - 23 groups are used as the 

test group. The data of 1-3 and 24-26 groups are used as 

the verification group. The optimal parameters obtained by 

the algorithm AFF training are shown in Table 6: 

Table 6. Parameter 

\
k  k  *

k  *( )kL   k  *

k  

1 (1,3,2,1,2) 

(-7.38054835, 4.33273494, 

-3.64733445, 4.12222301, 

2.11783449) 

0.25198217 

(-8.38054835,4.83273494, 

-2.64733445, 4.12222301, 

2.11783449) 

(-7.57159459,4.28758873, 

3.47886350, 3.94119798, 

2.01755273) 

2 

(-7.57159459,4.28758873, 

-3.4788635, 3.94119798, 

2.01755273) 

(-9.58074336, 5.25537670, 

-4.29128969, 5.63852196, 

2.52719037) 

0.23438636 

(-12.58074333, 

5.25537672, -4.2912901, 

5.63852205, 

2.52719047) 

(-

12.67249218,6.72993542, 

-5.1179182, 7.4901191, 

3.18841998) 

3 

(-12.67249218,6.72993542, 

-5.1179182, 7.4901191, 

3.18841998) 

(-13.40880788,7.09635693, -

5.19537445, 7.85842628, 

3.32961168) 

0.22008213 \  \  

It can be seen from Table VI that after minimizing 

( )L  by the filled function algorithm, the optimal 

parameters for the five influencing factors affecting renal 

cell carcinoma metastasis are  
13.40880788,7.09635693,  5.19537445,  7.85842628,  3.329611( 68)T    

predicting the remaining six sets of data, the probability 

values are 0.00737699722, 0.00271481598, 

0.000119076584, 0.880055784, 0.0541460992, 

0.961351203, which representing the predicted group 1, 2, 

3, 5 kidney cells no metastasis of cancer is 0, and 

metastasis of renal cell carcinoma in groups 4 and 6 is 1. 

Comparing the true values of these six groups 0,0,0,0,0,1, 

it can be seen that the other five except the fourth groups 

are correct, the accuracy obtained by the filled function 

method is 83.33%, so the filled function and its algorithm 

is considered to be feasible and effective. Since there is 

less data in the case, if there are more groups of data to be 

trained, then the accuracy obtained will be higher. 

5. Conclusion 

In this paper, a new one-parameter filled function is 

constructed, which overcomes the deficiencies of the 

previous filled function with exponential term, which 

decrease the efficiency of filled function algorithm. The 

feasibility and effectiveness of the method are verified by 

several examples. The innovation of this paper is that in 

addition to the experiments with numerical examples, we 

also tried to combine the filled function algorithm with the 

actual case, and got good results, which made it further 

research in application. The disadvantages are that when 

the algorithm is running, the selection of the initial point 

and the selection of the parameters need to be adjusted, and 

these data of the case are not enough, then the accuracy 

can be better. 
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